TH2851 | 精密阻抗分析仪 5个型号可选(10Hz-130MHz)

简要介绍

TH2851系列阻抗分析仪是常州同惠电子采用当前先进的自动平 衡电桥原理研制成功的新一代阻抗测试仪器, 为国产阻抗测试仪器 的新高度。

TH2851系列阻抗分析仪彻底改变了传统国产仪器复杂繁琐 的操作界面,基于Windows10操作系统,实现了全电脑化操作界 面, 让测试更智能、更简便。

TH2851系列阻抗分析仪也彻底超越了国外同类仪器120MHz 的频率瓶颈;解决了国外同类仪器只能分析、无法单独测试的缺 陷:中英文操作界面也解决了国外仪器仅有英文界面的尴尬:采用 单测和分析两种界面, 让测试更简单。

快达2.5ms的测试速度、及高达40MΩ的阻抗测试范围可以满 足元件与材料的测量要求,特别有利于低损耗(D)电容器和高品质 因数(Q)电感器的测量。四端对的端口配置方式可有效消除测试线 电磁耦合的影响,将低阻抗测试能力的下限比常规五端配置的仪器 向下扩展了十倍。

应用领域

电容器、电感器、磁芯、电阻器、压电器件、变压器、芯片组件和 网络元件等的阻抗参数评估和性能分析。

• 半导体元件:

LED驱动集成电路寄生参数测试分析;变容二极管的C-V_{DC}特性; 晶体管或集成电路的寄生参数分析

其它元件:

印制电路板、继电器、开关、电缆、电池等阻抗评估

介质材料:

塑料、陶瓷和其它材料的介电常数和损耗角评估

• 磁性材料:

铁氧体、非晶体和其它磁性材料的导磁率和损耗角评估

• 半导体材料:

半导体材料的介电常数、导电率和C-V特性液晶材料:液晶单元的 介电常数、弹性常数等C-V特性

性能特点

- 测试频率: 10Hz-130MHz
- 基本阻抗精度: 0.08%, 典型值≤±0.045%
- 高精度: 采用自动平衡电桥技术, 四端对测试配置
- 高稳定性和一致性
- · 高速度: 最快达2.5ms的测试速度
- 高分辨: 10.1英寸电容式触摸屏, 分辨率1280*800
- 点测、列表扫描、图形扫描、等效电路、晶体振荡器分析五种 测试方式
- 1601点多参数列表扫描功能
- 四参数测量
- · 自动电平控制(ALC)功能
- 4通道图形扫描功能,每通道可显示4条曲线,通道和曲线有14 种分屏显示方式
- 分析功能: 等效电路分析、晶体振荡器分析、压电分析、 曲线轨迹对比、介电常数分析(选件)、磁导率分析(选件)
- 图形扫描模式每条曲线单独分选, 频率分段扫描并分选
- 高兼容性: 支持SCPI指令集, 兼容KEYSIGHT E4990A、 E4980A、E4980AL、HP4284A

TH2851系列阻抗分析仪包括以下几种类型:

简要参数		TH2851 - 015	TH2851 - 030	TH2851 - 050	TH2851 - 080	TH2851 - 130		
测试频率		10Hz -15MHz	10Hz -30MHz	10Hz -50MHz	10Hz -80MHz	10Hz -130MHz		
基本精	基本精度		0.08%					
AC信	电压	5mVrms - 2Vrms						
号源	电流	50μA - 20mArms						
DC偏 置	电压	0V - ±40	0V - ±40V					
	电流	0mA - ±1	00mA					

尺寸/重量

体积(mm): 428 (W)×220(H)×325(D)

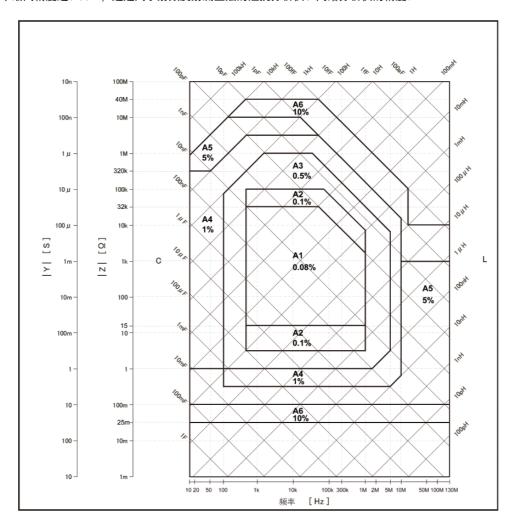
TU260474

净重: 14.5kg

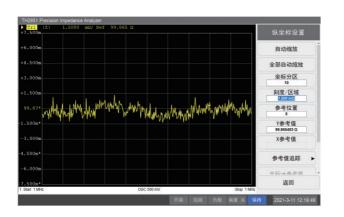
R.右士D R.什.(什.)

附件

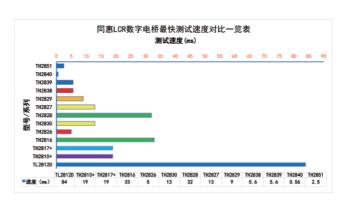
) 迎机门门干:	TH26047A	四즓对测试夹具
	TH26005D	四端对测试夹具
	TH26010	镀金短路板
	TH26082A	100Ω标准件(TH2851校准套件)
	TH26061D_P1	校准套件(TH2851校准套件)
	AR05TTS1000N	贴片电阻(TH2851校准套件)
选配件:	TH26007A	磁环测试夹具
	TH26008A	SMD元件测试夹具
	TH26009B	SMD元件测试钳
	TH26048B	四端对测试夹具
	TH26062A	四端对测试夹具
	TH26063	四端对测试夹具
	TH26108C	四端对贴片测试夹具
	TH26077	电介质测试夹具
	TH26086	TH2851-7mm夹具
	TH26088	TH2851磁导率测试夹具
	TH26086_CAL	TH2851-7mm夹具校准套件


四流动物学中

功能特点


A.高精度

宽带自动调零型自动平衡电桥技术的应用,得以在10Hz-130MHz频率、25mΩ-40MΩ的阻抗范围内都能达到理想的10%测量 精度,其中最高精度达0.08%,远远高于射频反射测量法的阻抗分析仪、网络分析仪的精度。

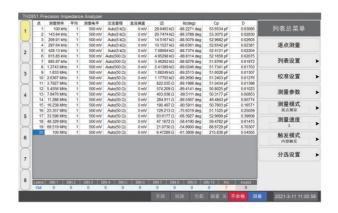


B.高稳定性和高一致性

下图是在速度5、测试频率1MHz,测量100Ω电阻的曲线, 由下图可见其轨迹噪声≦0.003%(≦±0.0015Ω)

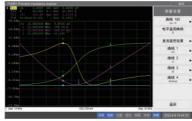
C.高速度

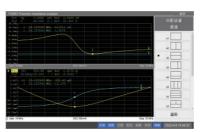
D.10.1吋大屏,四种测量参数,让细节一览无遗


10.1吋触摸屏、1280*800分辨率,Windows10系统、中英文操作界面,支持键盘、鼠标、LAN、VGA/HDMI接口,带来的 是无以伦比的操作便捷性。

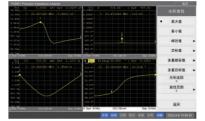
大屏幕带来更多的好处是,可以把所有测试参数及分选参 数、分选结果、功能选择等参数放置在同一屏幕,而且看起来绝 不拥挤和杂乱,同时可以显示四种测量参数,四种测量参数任意 可调。屏幕左边的按钮可以快捷选择8套测试参数

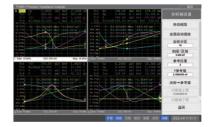
E.增强的列表扫描功能


可以最多设置1601点的列表扫描,每个点可以单独设置测试 频率、测试电压、直流偏置等测试条件。


F.强大的分析图形界面

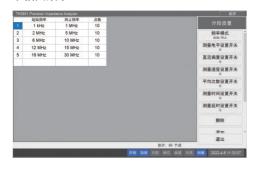
最多可以4通道同时显示,每个通道 可以最多显示4条曲线。通道和曲线各有 十四种分屏显示方法。

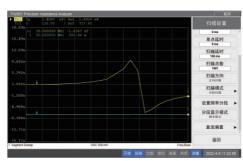

通道	显示窗口	单个窗口可以设置不同扫描 条件
曲线	测量参数	每个窗口可以设置4条曲线


单通道四曲线显示

双通道双曲线显示

单通道单曲线




四通道四曲线

G.分段扫描功能

分段扫描是在一个扫描周期内,设置不同的频率分段进行扫描,扫描时可设置不同的电平及偏置,扫描结果直接图形显示, 用于需要快速筛选多个频率段参数的扫描需求。

如晶体谐振器需要测试标称谐振/抗谐振频率以及其他杂散频率,通过分段扫描功能可在特定频率范围内扫描测量,无需扫描 不相关频率

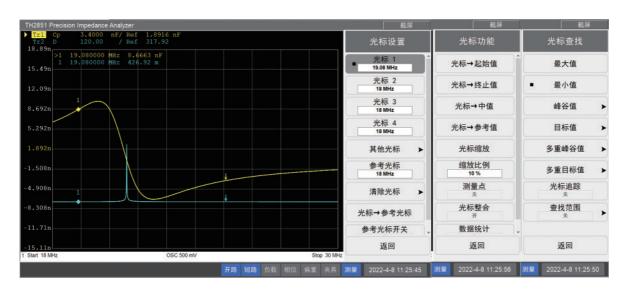
A20 * 参数如有修改 恕不另行通知 以最新资料为准

H.强大的光标分析能力

TH2851系列精密阻抗分析仪具有强大的光标分析能力,可以通过光标实现如下功能:

- 读取测量结果的数值(作为绝对数值或者相对于参考点的相对值)
- 2. 查找曲线上的特定点(光标查找)
- 3. 分析曲线测量结果, 计算统计数据
- 4. 使用光标值修改扫描范围以及纵坐标缩放

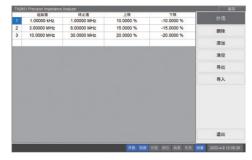
TH2851 可以在每条曲线上显示 10 个光标,包括了参考光标。

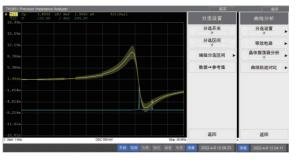

每个光标有一个激励值(坐标系 X 轴对应的数值)和响应值(坐标系 Y 轴对应的数值)。

光标查找功能允许搜索下列条件测量点:

最大值、最小值

峰谷值: 峰值(极大值)、谷值(极小值)、光标左侧最近的峰谷值、光标右侧最近的峰谷值、多重峰谷值

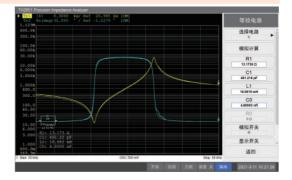

目标值: 距离光标最近的目标值、光标左侧最近的目标值、光标右侧最近的目标值、多重目标值

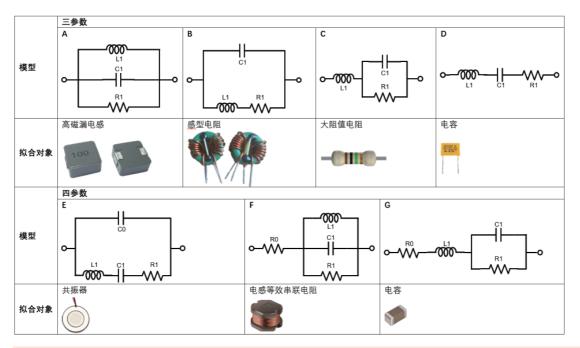


I.强大的图形分析功能

1) 曲线分选功能

可以对扫描曲线全部或者部分区域的测试值进行合格/不合格判断,常用于谐振曲线筛选如压电元件等谐振频率。

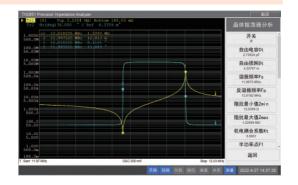



2) 等效电路分析

现实生活中不同类型的器件可以被等效成简单的三参数四种模型、四 参数三种模型的阻抗器件,等效电路分析测试功能提供了7种基本的电路 模型用于等效这些器件。

可以通过仿真的等效电路参数值的阻抗拟合曲线与实际测量的阻抗曲 线进行对比, 还可以通过您输入的参数按照所选择的模型进行拟合。

等效的电路模型可以直接输出成TXT文档方便用户保存使用



3) 晶体振荡器分析(压电器件分析)

对晶体振荡器进行测量以及性能分析,测量计算后获取晶体的谐振 频率、反谐振频率、品质因数等重要参数。

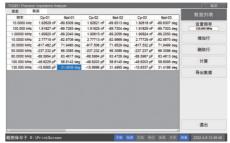
同时,对于其他压电器件如压电陶瓷滤波器、压电陶瓷陷波器、 压电陶瓷鉴频器、压电陶瓷变压器、大功率超声波发生器、换能器(振 子)、声表面波器件、电声器件等都可以测试如静态电容、损耗、谐振 频率、反谐振频率、机械耦合系数等参数。

4) 曲线轨迹对比

曲线轨迹对比用于对被测件进行连续测量,所有曲线显示在同一个坐标系中。由下列两种应用:

a) 针对多种不同被测件

对比不同测量条件下的曲线轨迹


设置不同的频率点, 计算出所有曲线在该频率点的测量值

b) 针对同一个被测件

对比同一个条件下测量的多次测量结果重复性

设置不同频率点, 计算出所有曲线在该频率点的测量值

J.介电常数分析(选件)

TH2851系列精密阻抗分析仪支持介质材料介电常数、介质损耗分析,需选购测试夹具及分析软件。

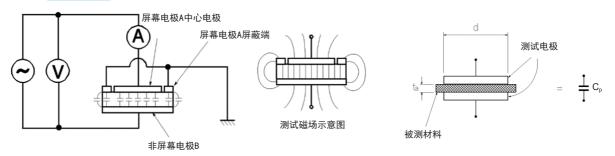
1.配置

序号	型 号	必选项
1	TH2851 阻抗分析仪主机	\checkmark
2	TH26077 介质材料测试夹具	\checkmark
3	TH2851 介电常数测试软件	\checkmark

2.TH26077介质材料测试夹具

TH26077电介质材料测试夹具是设计在TH2851上进行准确的介电常数及介质损耗测量的夹具。通过使用平行板方法测量 固态材料的介电常数,从而消除离散电容。

1) 外形结构



2) 基本参数

测试频率	DC-30MHz					
测量参数	电容(C)、耗损因数(D)、介质	<u>-</u> 2容(C)、耗损因数(D)、介电常数(ε -¦, ε -")				
测试电极	电极种类	被测材料直径	被测材料厚度			
	屏蔽电极A1	40mm - 56mm	≤10mm			
	屏蔽电极A2	10mm - 56mm	≤10mm			
测试原理	平行板测量法					
清零	开路、短路					

3) 测试原理

4) 介电常数公式

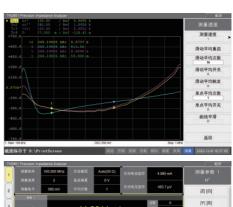
$$\varepsilon_r = \frac{t_a \times C_P}{A \times \varepsilon_0} = \frac{t_a \times C_P}{\pi \times \left(\frac{d}{2}\right)^2 \times \varepsilon_0}$$

C_P: 测试仪器测出的等效并联电容值(F)

t_a:被测材料的平均厚度(m)

A: 屏蔽电极中测试电极的面积(m²)

d: 屏蔽电极中测试电极的直径(m) 屏蔽电极A1: 38×10⁻³ [m]


屏蔽电极A2: 5×10⁻³ [m]

ε₀: 自由空间介电常数8.854×10⁻¹² [F/m]

3.介电常数分析软件

该软件为选件,开通后在TH2851界面直接选择对应的参数即可,分别可以单测、列表扫描、曲线扫描,下图为曲线扫描 界面。

PERSONAL PROPERTY AND	Security Principles						90.07
30 世紀 31 世 31 世紀 31 世紀	100,000 MHz		Auto(50 Ω)	交流电流监控	Ŀ	4.995 mA	测量参数 1 Ef
対策电平	500 mlV		1	交流电压能控		493.7 μV	Ζ [Ω]
99.1				•		77. 7	
εr'		11.8	3011	k	1576		[Y] [S]
		11.0	,,,,,	Λ	**	0.00000	6z(rad) [rad]
98:					HH.	X	θy(rad) [rad]
εr"		10.9	9550	k	9.5	0.00000	6z(deg) [deg]
#R 3					N.	X	θy(deg) [deg]
Er		16.1	1021	k	95	0.00000	Rs [O]
99.4					lest.		Rφ [Ω]
D		0.92	2830		**	0.00000	返回
DI保存于 D:\Pr	intScreen		19.21 7	F26 3129 (1.5	E HEIG	保証 央共	瀬屋 2022-11-25 09:14:

K.磁导率分析

TH2851支持磁性材料磁导率测试,在主机的基础上,需选配测试夹具及磁导率分析软件,具体配置如下:

1.配置

序号	型 号	必选项
1	TH2851 阻抗分析仪主机	\checkmark
2	TH26086 测试夹具底座	√
3	TH26088 磁导率测试夹具	\checkmark
4	TH2851 磁导率测试软件	√
5	TH26086_CAL夹具校准套件	√

2.测试夹具

1) TH26086转接底座

用于将4端对转换成N型7mm底座,适配其他测试夹具 如TH26088磁导率测试夹具。

TH26086为必选项, 若未选购, TH26088将无法正确测 量。

技术参数

测试频率	DC - 130MHz	
最高电压	±42V 峰值(AC+DC)	
工作温度	0° C - 40° C	

2) TH26088磁导率测试夹具

TH26088可精确测量环形磁性材料的磁导率。由于该夹 具的结构是环形线圈绕一圈 (无漏磁), 因此不需要绕环形线 圈的导线,而且允许广泛的频率覆盖。 它配有一个小型和一 个大型夹具,适应各种尺寸,是测量磁性材料的理想结构。

技术参数

测试频率	1kHz - 1G	Hz	
样本尺寸	高度h	内径范围b(直径)	外径范围c(直径)
小型部件用	≤ 3 mm	≥ 3.1 mm	≤ 8 mm
大型部件用	≤ 8.5 mm	≥ 5 mm	≤ 20 mm

3.测试原理

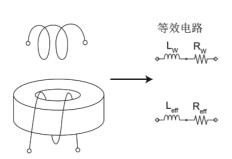
1) 磁导率基本概念

磁导率是材料与磁场的相互作用,等于电感 B (磁感应强度) 与磁场强度 H 的比值

复数相对导磁率 (μ*_r) 由实部和虚部组成

实部 (μ',): 储存电能 虚部 (μ",): 消耗能量

也是真空导磁率 (μ₀)的复数导磁率μ*,)


损耗角正切 $tan\delta$ 为无效导磁率,是虚部 (μ ",) 和实部 (μ ',)的比值

$$\mu_r^* = \frac{\mu^*}{\mu_0} = \mu_r' - j\mu_r^* = \left(\frac{\mu'}{\mu_0}\right) - j\left(\frac{\mu^*}{\mu_0}\right)$$

$$\mu_r^* = \frac{\mu^*}{\mu_0} = \frac{\mu_r'}{\mu_0} = \frac{\mu_r'}{\mu_0}$$

2) 有效磁导率μ'_ε、μ"_ε

采用电感测量法测量,在环形磁芯的磁芯上缠绕导线,并放置在一个密闭的圆柱形空间内(TH26088夹具),通过阻抗分析仪测量导线两端的电感(自感),根据测试电感量及下列公式推导出有效磁导率。

$$\mu_e' = \frac{\ell L_{eff}}{\mu_0 N^2 A}$$

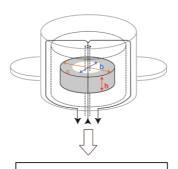
$$\mu_e'' = \frac{\ell \left(R_{eff} - R_W \right)}{\mu_0 N^2 \omega A}$$

R_{eff} 磁芯损耗 (包括线路电阻) 的等效电阻

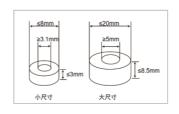
L_{eff} 环形线圈的电感

R_w 线路电阻

N 匝数


✓ 磁芯的平均磁路长度 [m]

A 环形磁芯的横截面积 [m²]

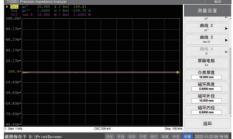

ω 2πf(角频率)

μ₀ 真空导磁率=4 π × 10⁻⁷ [H/m]

3) 相对导磁率 i

TH2851 阻抗分析仪

$$\dot{\mu} = \frac{\left(\dot{Z_m} - \dot{Z_{sm}}\right) 2\pi}{\mathrm{j}\omega\mu_0 h \ln\frac{c}{h}} + 1$$


 $\dot{\mu}$ 相对磁导率 Z_m 无磁芯时的阻抗测量值 Z_{sm}^{\cdot} 有磁芯时的阻抗测量值 μ_0 真空磁导率= $4\pi \times 10^{-7} \left[\frac{H}{m} \right]$ h 被测材料 (MUT) 高度 c 被测材料 (MUT) 外径 b 被测材料 (MUT) 内径

4.磁导率分析软件

选择开通磁导率分析软件之后,仪器便可以在单测、列表扫描、曲线扫描中直接选择磁导率参数,直接在界面显示测试 结果

L.标配附件

TH26047A四端对测试夹具 工作频率: DC-120 MHz ·最大直流偏置: ±42 V ·应用:用于导线类器件的阻抗 测试, 带屏蔽接地端

TH26005D四端对测试夹具 TH26082A 100Ω标准件 ·工作频率: DC-120 MHz

·最大直流偏置: ±42 V

TH26010 镀金短路板

●TH26061D_P1 校准套件 ②AR05TTS1000N 贴片电阻

M.选配附件

TH26007A磁环测试夹具 ·工作频率: DC-120MHz 最大直流偏置: ±42V 应用: 小型磁环单匝电感量测 试,尺寸大小可定制

TH26008ASMD 元件测试夹具 工作频率: DC-120MHz ·最大直流偏置: ±42V 应用: SMD 器件, 尤其高频小 电容≤3pF或小电感≤1µH。测 试 频率≥100kHz

TH26009B SMD元件测试钳 ·工作频率: DC-15MHz ·最大直流偏置: ±42V 应用:用于各种 SMD 器件测试

TH26108C四端对贴片测试夹具 TH26062A四端对测试夹具 ·工作频率: DC-40 MHz 最大偏置: ±42 V 应用: SMD器件, 尤其高频小电 容≤3pF或小电感≤1µH,测试频率 ≥100kHz,且对D和Q要求高的器件

·工作频率: DC-100kHz 最大直流偏置: ±42V 应用:测试电动汽车用薄膜大容 量DC_LINK电容

·工作频率: DC-13 MHz 最大直流偏置:±42 V 应用: 用于各种直插式轴向和径 向阻抗器件

TH26048B四端对测试夹具 TH26063四端对测试夹具

·工作频率: DC-100kHz 最大直流偏置: ±42V ·应用:测试螺栓电容器, DC_LINK电容

TH26077电介质测试夹具

·工作频率: DC-30 MHz ·DUT尺寸: 10mm – 56mm ·DUT厚度: ≤10mm ·应用: 固体材料的介电分析

TH26086 TH2851-7mm夹具 TH26088 TH2851磁导率测试夹具

·工作频率: DC-130 MHz ·应用:四端对接口转7mm接口

·工作频率: DC-130 MHz ·DUT尺寸: ≤20mm ·DUT厚度: ≤8.5mm

应用: 磁性材料复数磁导率分析

TH26086-CAL 7mm夹具校准套件

技术参数

X/III = XX								
产品型号		TH2851-015	TH2851-030	TH2851-050	TH2851-080	TH2851-130		
显示			D显示器1280×RGB×	800, 电容式触摸屏				
卖数		6位显示分辨率						
AC测量参	数	Cp/Cs、Lp/Ls、F	Rp/Rs、复数Z、 Z 、	复数Y、 Y 、R、X、	G_{V} B_{V} θ_{V} D_{V} Q_{V} V_{A}	AC. IAC		
DC测量参	数	V _{DC} , I _{DC} , DCR	V _{DC} , I _{DC} , DCR					
	范围	10Hz - 15MHz	10Hz - 30MHz	10Hz - 50MHz	10Hz - 80MHz	10Hz - 130MHz		
则试频率	最高分辨率	1mHz						
	频率相对误差	≤±0.007%						
AC电压		5mV - 2Vrms						
测试电平	分辨率	1mV						
炒风电十	AC电流	50μA - 20mArms						
	分辨率	10μΑ						
	电压	0V - ±40V						
DC偏置	电压分辨率	1mV						
ロし州且	电流	0mA - ±100mA						
	电流分辨率	40μΑ						
测试端配置		四端对						
输出阻抗		25Ω/100Ω						
典型测量的	付间(速度)	五档: 1(快速) - 5 1:2.5ms 2:10m (不包括通讯时间			ī不同)			
最高准确度		1kHz: 0.08% 1MHz: 0.08% 2MHz: 0.5% 10MHz: 1% 130MHz: 5.0%						
测量显示抗	き围	a 1×10 ⁻¹⁸ ; E 1×10 ¹⁸						
Cs, Cp		±1.00000 aF - 999.999 EF						
Ls, Lp		±1.00000 aH - 999.999 EH						
D		±0.00001 - 9.99999						
Q		±0.01 - 9999.99						
R、Rs、R	p、X、Z	±1.00000 aΩ - 999.999 EΩ						
G、B、Y		±1. 00000 aS - 999.999 ES						
Vdc		±1.00000 aV - 999.999 EV						
ldc		±1.00000 aA - 999.999 EA						
$\theta_{\rm r}$		±1.00000 rad - 3.14159 rad						
θ_{d}		±0.0001 deg - 180.000 deg						
Δ%		±0.0001% - 999.9	99%					
多功能参数	対 列表扫描	扫描参数:测量参			BIAS电压、DC BIASE	电流		
	参数	频率、ACV、AC						
	类型	对数、线性、频率	泽分段					
图形扫描	点数	2-1601						
1月11月1日	通道数	4						
	曲线数	4条/通道						
分屏显示		14种分屏方式,16条曲线						
等效电路分	分析	3元件模型: 4个、4元件模型: 3个						
晶体振荡器	肾分析	有						
曲线轨迹比	比对	有						
分选		LCR模式10档分词	选;扫描模式每条曲线	发单独分选				
接口		RS232C, USB F	OST, USB DEVICE	E、LAN、GPIB、HA	NDLER、VGA、HDM	ΛI		
开机预热时	间	60分钟						
输入电压		100-120VAC/198	3-242VAC可选择,47	-63Hz				
功耗		最大150VA						
功耗								
	HxD)mm³	428x220x325						